DEIP, discontinuous element insertion Program — Mesh generation for interfacial finite element modeling
نویسندگان
چکیده
منابع مشابه
Finite element mesh generation and adaptive meshing
This review paper gives a detailed account of the development of mesh generation techniques on planar regions, over curved surfaces and within volumes for the past years. Emphasis will be on the generation of the unstructured meshes for purpose of complex industrial applications and adaptive refinement finite element analysis. Over planar domains and on curved surfaces, triangular and quadrilat...
متن کاملFast Finite Element Method Using Multi-Step Mesh Process
This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...
متن کاملThree Dimensional Finite Element Mesh Generation for Maxillary Second Premolar
The finite element method (FEM) has established itself as a powerful tool in biomechanics. However, developing a finite element three dimensional mesh for irregular geometry object is still a labor intensive task hence limits the usage of the three dimensional analysis for dental structures. This study presented an automatic procedure to generate the three dimensional finite element mesh of a m...
متن کاملHigh-Quality Multi-Tissue Mesh Generation for Finite Element Analysis
Mesh generation on 3D segmented images is a fundamental step for the construction of realistic biomechanical models. Mesh elements with low or large dihedral angles are undesirable, since they are known to underpin the speed and accuracy of the subsequent finite element analysis. In this paper, we present an algorithm for meshing 3D multi-label images. A notable feature of our method is its abi...
متن کاملMesh-morphing algorithms for specimen-specific finite element modeling.
Despite recent advances in software for meshing specimen-specific geometries, considerable effort is still often required to produce and analyze specimen-specific models suitable for biomechanical analysis through finite element modeling. We hypothesize that it is possible to obtain accurate models by adapting a pre-existing geometry to represent a target specimen using morphing techniques. Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SoftwareX
سال: 2018
ISSN: 2352-7110
DOI: 10.1016/j.softx.2018.05.002